lyndsayjgrant has written 7 posts for No Matter. Fail Better.

Datafication: how the lens of data changes how we see ourselves


Image from eye/see via Flickr.

A post for Digital Media and Learning.

Digital media allow us to produce, collect, organise and interpret more data about our lives than ever before. Our every digital interaction contributes to vast databases of information that index our behaviour from online movie choices to mapping networks of connections across twitter. In an age of uncertainty, big data sets promise to provide an objective lens through which to understand the world, and both individuals and institutions like schools are turning to data to drive analysis and action. But what does this increasing datafication mean for how we understand the world, and how we understand learning?

Learning to read digital data
Data can be reassuring. In an uncertain world, verifiable data can provide us with solid facts on which to ground our understanding of what is going on in order to guide our decisions. But while data makes some things apparent and more visible to us, we also need to be aware of what is not visible through this datafication. Of course, any analysis is only as good as the data that feeds into it. Choices about which data to collect tend to favour more easily quantifiable elements, which makes it easy to overlook more elusive or intangible aspects – a point which is often used to argue against measuring the quality of learning only in terms of grades.

But our interpretation of data is also skewed by how that data is represented. Raw data in the form of endless numbers tends to be pretty uninspiring stuff, and difficult for the average person to make sense of. There is public demand for access to and transparency of data, but not the equivalent literacies to read and interpret it. This explains the popularity of infographics that use visual design to distil complex data into more immediately appealing and readable representations. Just as journalists and film-makers take decisions about what details to include in a story or how to film a scene, infographic designers take decisions about which elements and connections of a dataset to highlight. Even the most basic of data representations tends to influence our interpretations. My local school reports termly on students’ attainment and their progress since the previous term. Slow progress is coloured red, which focuses scrutiny and improvement efforts on those student groups and subjects where progress is slow even when their absolute level of achievement is pretty high at the expense of those where progresss is better but achievement still low. As Laura Noren points out, while most of us learn something about how writing achieves its effects through learning to write ourselves, very few of us learn to create or critique visual representations of numerical information. The particular interpretations of data offered to us through graphic design are thereby very difficult for most of us to critique – as is also illustrated by the graphical representations of data used by news media, such as Fox News.

Data reflects the past and drives future behaviour
As we engage in online activity, we leave trails of data in our wake that are added to the huge databases held by Facebook, Google and marketing companies. But there is also a growing movement of people tracking and analysing data about themselves. Members of the quantified self movement track all kinds of data about their daily lives – from numbers of miles run over a year, to sleep patterns, to symptoms of long term illnesses. The resulting data is not used just to develop greater awareness of behaviour patterns, but to gain more control over future behaviour. Data is used as a motivating tool, with individuals playing games, often competitions with others, to get higher or lower numbers in their personal data. Datafication is thus both backward-facing, representing what has happened so far, and also forward-facing, driving future behaviour.

Yet the way that datafication informs future action is not always straightforward. In schools, backward-facing data about student achievement is used as an accountability measure, for school inspectors, parents and the public. The same data is also used to inform school improvement plans – to help teachers understand which groups of students are struggling and which are succeeding, which topics they have grasped and which they are finding more difficult. Yet using data to report on previous performance can come into conflict with using it to inform future activity. There are pressures for schools to put the most positive spin possible on data when it is being used for accountability – but to use data for improvement means strongly interrogating and reflecting on the data to understand what is really going on.

The insistence on transparency of data can also come to be seen as an end in itself. One school I worked with developed an online system for visualising data for pupils, parents, teachers and school managers. Yet the power of the technology to create a beautiful representation of complex data actually distracted from the question of how this data should be interpreted and acted upon. Beautiful data can be seductive, giving the illusion that if we only have enough information we will be able to make the right decisions. But exactly what parents should do if they know their child is a superstar in Science but failed a spelling test, or exactly what strategies teachers might adopt as a result of knowing that a third of their class struggle with fractions are questions to which data cannot supply the answers. While providing an illusion of certainty and control, the data itself only provides a starting point for asking more questions.

Facebook is a prime example of how datafication attempts to influence our behvaiour. By displaying numbers of ‘likes’, ‘comments’, ‘shares’ and ‘friends’, Facebook encourages its users to spend more time on the site creating and sharing content that will increase those numbers – and provide more valuable data about ourselves that makes it easier for marketers to effectively target us with adverts. In an attempt to reveal how this quantification of behaviour influences our online behaviour, Ben Grosser has produced the Facebook Demetricator – a browser add-on which strips out the numbers from Facebook. Rather than notifications reading ‘7 people like this’ users simply see ‘people like this’; rather than ‘267 friends’ it just displays ‘friends’. Grosser hopes to show users how the designed-in quantification drives some behaviours and not others – and invites users to question why Facebook has chosen to make visible some data and not others. It could, as Grosser points out, tell us how many hours per week we have spent on the site or how many promoted stories we have clicked on – but this might drive less, rather than more, time spent on the site.

The use of data to drive online behaviour does not stop at Facebook. By using cookies to track interaction across multiple sites, and then aggregating this information, marketers get an even more accurate and nuanced picture of who you are and therefore the adverts you are more likely to respond to. Collusion provides a great visualisation of this behind-the-scenes datafication.

The effects of datafication also arguably extend to our offline behaviour and influence how we see ourselves and the world around us. If numbers of friends, likes and comments are what drives our interaction online, particular attitudes and perspectives are being cultivated that we may carry offline. Different sites collect and reflect back to us different kinds of data about our identities. But the kinds of data that are collected and how they are represented make some identities more possible than others. For example, Facebook is rumoured to be developing a ‘want’ button, encouraging the presentation of an identity shaped by consumer desire. The kinds of data that feed into these data-driven representations present particular kinds of identities to the outside world, but also reflect back and influence how we see ourselves. To take an example from the quantified self movement, tracking illness symptoms can lead people to view themselves as ‘an unwell person’. Similarly, if pervasive visualisations of achievement data are the main way that students’ school identities are presented to their teachers and themselves, they will learn to see themselves as a ‘slow’ or a ‘bright’ student. Jenny Davis and Nathan Jurgenson describes this simultaneous production and consumption of identity-data as ‘prosumption’.

Remixing data
None of the data we produce makes sense in and of itself, in needs to be placed in context in a wider narrative to have meaning. For example, monitoring our grades does not show whether progress is ‘good’ unless we compare it with other students or an expected benchmark. If we want to have control over the datafication of our identity, context is all. This is why curation is so important: the selection of some elements and exclusion of others allows a particular story to be told. The way that the logic of data shapes and constructs our understandings, decisions and identities, and the extent to which we have control over this process varies considerably between settings. The question then becomes: who has the power to choose which elements to select in constructing particular tellings of who we are? Within the bounds of Facebook’s architecture, we can use various settings to show and hide different information about ourselves – but it is also possible for our ‘friends’ to add new data, to disaggregate and recombine our data , generating different ‘tellings’ of who we are, or undermining our carefully curated presentations. In schools, the decisions about what data to collect and how to represent it are driven by the institution’s demands for accountability of student performance: students themselves have very little control over what data is collected, how it is contextualised and how it is interpreted.

While datafication may give the illusion of more certainty about ourselves, our world and our learning, it does not in itself provide final answers. If data is to open up opportunities for thinking and acting differently in the future, it can only ever succeed in posing more questions. Dawn Nafus describes this as the “more-and-yet-less” quality of data. Measuring data gives more information, but only succeeds in posing more questions about what data really means. Tracking a student’s progress does not tell us how to better support their learning – and if we are to use the data in any meaningful way at all it drives us to consider what we really mean when we talk about learning and progress.

If we are to avoid having more information but less meaning, and avoid becoming subjects defined by datafication, we need to be able to continually remix our data to take control of our own stories. Given that we are all producing masses of data as a by-product of our digitised interactions, and there is greater capacity for tracking, curating and remixing that data into stories, the possibility exists that we could have greater control over which versions of our identities we presented in which contexts. If we could take the data about us and recontextualise it in our own stories we could have more control about how that data was represented and interpreted, placing school grades and facebook photos alongside other stories and other kinds of data to tell a different kind of narrative. If we were able to continually remix our data so that it was recognised as only a partial picture of who we are, we may be better able to resist the controlling illusion of certainty offered by datafication and create possibilities for data to drive new ways of thinking and acting in the future.


How do teachers construct their understanding of “digital technologies”?

School and Learning with Technology

This question is the starting point for my research – but how have I arrived at a point where this seems like the right question? Introductions to research are usually written in formal terms: situating your research in the previous literature and making a case for its practical or theoretical necessity. This approach can make it seem as if your research questions and approach was obvious and always there just waiting for you to come along and articulate them. The formal positioning of research is essential in establishing the warrant for research. But it’s not necessarily how we identify the questions in the first place and doesn’t make transparent our own personal choices in asking these questions, in this way, at this time. For this reason, and also because my research is asking questions about the stories teachers tell about digital technologies, here I am telling a story about my personal and professional experience that situates my research questions in a personal narrative.

Transforming education through technology

I worked as a researcher for five and a half years for Futurelab – a not-for-profit research lab exploring how technologies might enable different kinds of learning and the implications of a digital society for education. I was involved in developing and trialling prototypes for using new technologies to support learning – including exploring social software, locative technology, and distributed “speckled computing” in schools, museums and informal learning situations amongst others. As part of this work, I involved myself not just in the ‘academic’ literature and research about technologies and education but in the wider “ed-tech” field: a somewhat cliquey, loosely defined, but identifiable grouping including commercial companies, educational technology suppliers, industrial developers, policy-makers, non-governmental organisations, academics, enthusiastic educators and a growing number of consultants.

Amongst these circles there was a lot of enthusiasm for the opportunities and potentials of technologies to transform learning for the better. “Transformation” and “innovation” were the watchwords of this grouping. Futurelab itself was implicated in the promotion of digital technologies to usher in a brighter future for education. The chairman of the board of trustees described the lab’s purpose to become “the Hollywood of education”; reflecting both his background in the film industry and his vision for educational technology to be as engaging for young people’s learning as blockbuster films.

Hope in the potential of digital technologies to ‘transform’ education and generate ‘innovative’ solutions to long-standing problems appear to be the common foundations of the ed-tech community. Technologies are cast as creating a need for educational transformation: education needs to adapt and keep up with the demands of a digital society and economy. Technologies are also seen as bringing a necessary disruption to education systems that are so problematic that incremental improvement will not suffice.  Paradoxically, as well as disruption, technologies are also cast as providing the fix to a wide variety of educational problems.

Few people would actually argue that all you have to do to bring about significant change in education is introduce digital technologies (though see the recent exaggerated claims about OLPC in Ethiopia). This sort of crude technological determinism that places all agency in the technology itself tends to be replaced with a  more subtle claim that it is the characteristics, or ‘affordances‘, of technology that make possible new kinds of activities, which allow for transformation. Nevertheless, the technology-plus-human-action explanation still makes grand claims about the possibilities of educational transformation through technology.

Hype, barriers and the messy reality

Yet there seemed to be a disconnection between the transformational rhetoric of the ‘ed-tech’ bubble and the realities of technology-use in schools. One of my earliest research projects in 2005 tracked the introduction of wikis to a classroom. Inspired by the advent of social software and the example of Wikipedia, the class teacher and I had become excited about wiki software’s potential to support collaborative learning. But what I found was that the technologies made little change to the underlying logics of the classroom, which were based on individual work and assessment, and pupils actively resisted involving themselves in each other’s work. My experience seemed to fit into a wider pattern, whereby technologies, when they were widely used in schools, tended to be integrated into existing logics and patterns rather than ushering in widespread transformation or disruption.

One response from the ed-tech world to the question of why technologies seem to have not had a transformational effect on education has been to identity and then remove ‘barriers’, as if once these had been removed, then the benefits of the technology would automatically ‘flow’ (1). A lot of the barriers identified were levelled at teachers who were caricatured as fearful of new technologies, unskilled and in need of re-training, and even as just being too old to understand the power of new technologies. Outdated teachers and schools were blamed for their failure to allow technologies to achieve their transformational potential without taking seriously the real reasons why technology might not be enthusiastically adopted or might not be used in the transformative ways envisioned by enthusiasts (2).

While I was working with teachers I found that they often had different ideas about the potential uses of technology than I did. When a teacher I was working with described how he hoped that the technologies would allow the school to have greater control of children’s out-of-school behaviour I realised that we had fundamentally different views not just of what our project was about – but what education was about – and this helped explain our different views about how technologies should be used. At the time I didn’t know how to respond within the research project. But it strikes me now that these differences of opinion need to be understood and explored, not just written off as teachers’ outdated views about the technology-use.

At conferences with other people in the ed-tech world it often seemed as if we were part of a shared movement that agreed on the benefits of technology use and the task in front of us was to demonstrate those benefits in order to persuade policy-makers and teachers to take technology seriously. Yet, as Lisa Phillips discovered in her Masters research into ‘innovation’ there were actually diverse, conflicting visions of what a technologically transformed education system might look like. An excessive focus on the ‘tools’ of technology rather than the ‘ends’ of education concealed contradictory messages about what exactly we were trying to transform and why.

By way of illustration, some of the different visions that I think I can identify in the ed-tech community so far are:

  1. Keeping Up with Change: Our society, culture, politics are changing in the wake of widespread use of digital technologies. This means we need to learn new things to be ready for the wider world, and in turn we need to learn them in new ways. Digital technologies inform what we need to learn and how we need to learn it.
  2. 21st Century Skills and employability: Education steeped in technologies is required if we are to educate our future workforce in the skills demanded by businesses including teamwork, communication, problem-solving, innovation as well as proficiency with using digital technologies.
  3. The Knowledge Economy: retaining our global competitiveness in the face of the rising nations of Brazil, Russia, India and China will require highly skilled knowledge workers; a technologically-skilled population is crucial to national competitiveness.
  4. Participatory Cultures and Digital Literacies: In order to fully participate in our society, politics and culture we need to learn to communicate, create and critique through digital media; education therefore needs to equip all young people with these skills.
  5. Voice and Democracy: Technologies can facilitate the expression voices of those who might otherwise not be heard; young people can more easily express themselves, have their views taken into account in matters that concern them and engage with others through new media forms and with lower barriers to publishing via the internet
  6. Social Justice and Digital Divides: The most advantaged in society are able to reap the benefits of access to and use of digital technologies and so education has a responsibility to make sure these opportunities are available to all.
  7. Access to Education: Technologies can extend educational opportunities to those who would otherwise be unable to access them; including those excluded from traditional education by disability or illness; those in regions where school access is unavailable. It is argued that access to knowledge no longer needs to be restricted to institutions and some question the need for schools altogether.
  8. Increasing Achievement: Technologies offer new tools to aid cognitive development and enable more effective forms of teaching and learning traditional content.
  9. Motivating Learning: Children and young people love using digital technologies (in particular games, social media, mobile phones) so education should make use of this motivating power, harnessing it to traditional educational aims.
  10. Educating future consumers: A vision that may not be publicly expressed very often, but is a driver for technology-use in schools, is the need to educate children in the necessity of digital technologies for daily activities, and even specific brands, in order that they then persuade their families to purchase those technologies and become lifelong consumers when they grow up.

Each ‘vision’ is very crudely described here. It is of course not an exhaustive list, and each vision is not mutually exclusive of the others (do add more in comments!). However, neither do they necessarily sit easily alongside another. I am also not making judgements about whether any of these aims are ‘right’ or not; certainly very few people would describe any of these visions as completely worthless. There are, however, very different views about which might take priority – and these decisions about whether it is more important to use technologies to increase motivation to learn or to express a democratic voice are ultimately political decisions.

Unpicking the discourses of the ed-tech community like this shows that the visions of educational transformation promised by technologies may actually have very little to do with technologies themselves. Instead it seems that technologies are recruited to play particular roles in different political visions about the purpose of education.

With this understanding of how technologies are implicated in visions of educational transformation, it makes much less sense to ask why teachers are not taking advantage of the assumed obvious benefits of technology in their classrooms. Just as the visions listed above recruit technologies to play a particular role in educational narratives, teachers’ uses of technologies may be better understood as a result of how they position technologies in their narratives of education – and how in turn these narratives help construct their ideas of what digital technologies are, and what they can do in education

1. Selwyn, N. (2012). Making sense of young people, education and digital technology: the role of sociological theory. Oxford Review of Education38(1), 81–96

2. Perrotta, C. (2012). Do school-level factors influence the educational benefits of digital technology? A critical analysis of teachers’ perceptions. British Journal of Educational Technology, (Early View, 1–14. doi:10.1111/j.1467-8535.2012.01304.x

Mapping Our Learning Worlds


Matthew Paris, via Wikimedia Commons

Matthew Paris, via Wikimedia Commons


My new post for Digital Media and Learning:

Digital maps allow us to map our journeys across times and places, linking virtual information to physical locations. What do digital maps teach us about how to see the world and our place in it and what kinds of navigations do they make possible? What opportunities do digital maps offer for mapping our learning journeys across school, home and other spaces and times?

read the full post at: Mapping Our Learning Worlds | DMLcentral.

In this post I was trying to think about what sorts of logics we encode in our maps of the world, and how that shapes our understanding of our world. And given that digital maps allow us to map all kinds of experience, not just the physically geographical, what kinds of logics are we using when we talk about mapping our learning across different kinds of spaces – and how might that make some kinds of learning more possible than others?

On not making people happy


“People who respect themselves are willing to accept the risk that the Indians will be hostile, that the venture will go bankrupt, that the liaison may not turn out to be one in which every day is a holiday because you’re married to me. They are willing to invest something of themselves; they may not play at all, but when they do play, they know the odds.” Joan Didion, On Self-Respect.

I was told to go away and read Bernstein, so that’s what I did. It was a pretty painful experience; he is, frankly, a terrible writer, and there is something migraine-inducing in how his theories add layer upon layer of increasingly complicated mechanisms in an attempt to explain away the contingency, messiness and ultimately unknowable nature of the social world. But I struggled on through my frustration, drawing diagrams and taking notes, but without being really sure why I was persevering. This was the compass I had been given, and so I trusted that this was the route I should follow. I wanted to do what was asked of me and make my teachers happy.

It strikes me that trust is a fundamental element of education. The process of education is inherently unknowable. We don’t know exactly where we are going or how we are going to get there and the journey is different for all of us. The kind of learning in which we can identify a goal, fully understand what it entails to achieve that goal, and know exactly the steps to get there is not particularly meaningful; I might describe it as training rather than education. Gert Biesta describes this as the principle of ‘deconstruction’ in education – it is always open to otherness. And because of this element of unknowability, we put our trust in the process, and particularly our teachers, without quite knowing where it will take us or how we’ll get there.

Those of us who do well at education learn to live with the uncertainty of the journey because we know that sooner – or more likely later – our trust is repaid, and we will end up somewhere interesting and worthwhile. What must it be like for children who just can’t put their trust in the institutions of schooling or feel that they cannot trust those in authority? If you couldn’t trust the process not to leave you feeling worse than when you started, why would you even risk the uncertainty?

But sooner or later we have to start trusting that we’ll find the way ourselves, or at least trust our instincts that  we’re heading in a good direction. Putting our trust entirely in our teachers means we never have to quite take responsibility for what we say; we wait until we have been given permission that we know enough, have met the required standards. We hedge our bets, taking out insurance policies against criticism by waiting for the nod that we have reached our destination and are permitted to speak. But this comes at a high price: which is failing to learn to trust or respect ourselves. This is what I take from Joan Didion’s quote at the beginning of this post. To have self-respect is to put ourselves out there, to take the risk, and, yes, perhaps get it wrong, leave something out or piss people off. To have self-respect is about not waiting for someone to give us permission to speak, speaking only when we are certain that our statements are bomb-proof or editing out any possible offence so our statements are acceptable to all. To have self-respect is to resist fashioning ourselves into a mirror in which everyone sees something agreeable. Though it is easier said than done in a world where our public performances can be tracked, coded, decontextualised and used against us, it’s important to give ourselves permission to say something, to take the risk of being an idiot in public, to invest ourselves without  mortgaging our ideas to our teachers.

Ultimately, I must trust that actually, I do have a pretty good idea of where it is that I’m going. Yes, I have things to learn. Yes, I don’t exactly know what my destination will look like when I get there. But if I put my trust only in my guides and not myself, if I wait for their permission before owning my work then I will not learn to trust my own judgement. To have the kind of self-respect Joan Didion talks about is to risk seeming naïve, to say things I might change my mind about, to trust my own instincts about where I’m going.

Having this kind of self-respect means next time, hopefully I can resist dutifully spending weeks ploughing through interesting but ultimately distracting detours like Bernsteinian theory. Time to take the risk of actually investing myself in this venture, in the full knowledge it might fail. Failing better, all the time.

Thanks to this post at Marginal Utility for bringing the Joan Didion quote to my attention; I am planning a later piece on how we use data about ourselves that draws more substantively on the points made in that article.

The photo of Joan Didion is from here.

Failure, productivity and audience in #acwrimo

Productivity - TDL

Photo credit: koalazymonkey via Flickr

I signed up for Academic Writing Month soon after it started. I hoped that it would help get me into some good writing habits. Plus, I needed to get my MPhil upgrade document written (a 10-15,000 word extended research proposal for my PhD). I promised to spend the first two hours of every morning focused solely on writing tasks (including reading, note-taking and planning) and to write 500 words a day without worrying too much about whether those words were good enough or would make it into my final draft. I went public with this pledge on twitter and on the shared accountability spreadsheet. I was hoping that I would develop some good habits so writing every morning became something I didn’t have to think about, and to get a better idea of how long it really takes me to do something. Because I often find myself flicking between several things at once, it’s hard to know how long any one task would really take me, and as a result I often drastically underestimate it.

I haven’t stuck to my goals – even slightly. And I haven’t participated in the community aspect either. I peer through my fingers at the #acwrimo twitter stream with a mixture of guilt at not participating more, and jealousy of others’ success. Public accountability is a big part of #acwrimo, but because I don’t actually know anyone else involved it doesn’t feel that real: If I don’t keep up my promise, no one except me will know or care. But while public accountability can be incredibly motivating (for some people), having fallen behind with my aims, I feel like I need to achieve something worth sharing before I can start participating again. And with each day that passes, it feels like the something needs to be even bigger to justify my re-entry.

The Thesis Whisperer describes her concerns about #acwrimo feeding in to an academic culture built on an unhealthy obsession with urgency, productivity and performance metrics that can leave many burnt out. What changed her mind is the ability to set her own goals and targets around her own working patterns – so to write for a period of time rather than produce a set number of words. And PhD2Published, heroically coordinating the twitter chat, emphasise that it should be about finding and extending each individual’s personal best way of writing, not adding to the burden of stress:

Nevertheless, we do seem to consistently compare our negative feelings about low productivity and participation to the seemingly easy positivity we can find on the twitter stream. As Explorations of Style points out, this comparison of our internal feelings to others’ external projections is not just unhelpful but inaccurate, and as academics we should know better. But how do we join in when we feel we haven’t achieved enough to earn our place in the conversation?

It is hard not to focus on numbers of words as the main focus of productivity. They are the visible, almost tangible, evidence that we have accomplished something. Kathleen Fitzpatrick talks about academics’ need for outward and visible signs of productivity, or even stress, as indicators of a state of grace. In a conscious nod to the Catholic church’s description of the sacraments, she describes how the signs of busyness we display come to be equated with our academic moral worth. If you have time for leisure – or sitting around thinking – well then you can’t be busy enough!


Photo credit: Dave Makes via Flickr

This made me think more about how “productivity” potentially requires an audience. To really feel productive, perhaps we need to have our productivity seen by others, and in order to display our productivity, we need tangible things like word counts or other outward and visible signs of busyness. But productivity isn’t the same as work, study or thought. One of the reasons #acwrimo hasn’t worked so well for me this time is I’m just not ready to churn out the words.  I’ve been distracted by organising events at work, I’ve been getting to grips with (and getting lost in) a new theoretical perspective I’m still fairly ambivalent about, and it’s been a tough time personally for reasons I won’t go into here.

But that doesn’t mean I’m not making important progress. I need time to read and think, and this is harder to display. I also need time to find a way to think about my work and writing in a way that is more meaningful to me than it has been for a while. The pressure of productivity can mean that this important phase can feel unimportant or lead to guilt about the time it takes – this guilt is inevitably counter-productive because without these foundations, efforts towards productivity remain meaningless and subject to high-risk failures. I’ve also started writing this blog, which could become a source of procrastination, but actually feels important as part of a process of finding a voice and a way of speaking that feels right. The blog title says it all, really: I will continue to fail, as we all will, and that doesn’t really matter. The trick is in carrying on and sometimes managing to fail a bit better. This process I hope will mean that the words that I do write, when I write them, will be words that I think are worth saying.

The wisdom of Bristol crowds


Last night I exercised my civic duty and voted in Bristol’s first mayoral election. I hadn’t decided exactly who I was going to vote for until I got to the polling station, and so I was thinking about how people make their minds up who to vote for. I was also thinking about how we imagine democracy – government by the people – to work, and what kinds of expressions of political will we think are legitimate.

All this follows hard on the heels of an obsessive following of the US elections in my house. One of the more bizarre rhetorics following Barack Obama’s win is the claim that he ‘bought’ the election by offering ‘gifts (Romney wants to you read the word ‘bribes’ here) to African American, Hispanic and young voters. These gifts are of course not brown envelopes full of cash handed over in a clandestine meeting on a park bench, but policies designed to help relatively hard-up groups of society. The idea that it is somehow illegitimate to offer sections of the population a better life in return for their vote represents a particularly twisted idea of democracy. Surely if Obama can win more votes by offering popular measures then he does – by definition – represent the majority view of the American population?

But what does this tell us about how we imagine democracy to work? It implies a kind of ‘wisdom of the crowds‘ model where every individual might not be able to see the big picture, but in aggregate, the sum of non-expert guesses amounts to a better result than any expertise could provide (this is also the logic behind the use of betting markets as pretty accurate predictors of elections.) So do we imagine that we all vote in our own individual self-interest but that the aggregated sum of our narcissism adds up to a good representation of the interests of society as a whole?

In practice, one problem with this view is that some people are more likely to vote than others, and those who are living in the poorest areas, the young and those who do not speak English well are less likely to make their voices heard at the ballot box. Hence, in Bristol, the Labour campaign focused on ‘getting the vote out’:

But do we really think that the act of voting works like the invisible hand of the market – that we all act as rational, self-interested consumers ultimately producing the most efficient outcome? Some of the rhetoric and discourse about elections, particularly in the US where we saw detailed targeting and demographic segmentation of the electorate, seems to promote this view. For me at least, I was trying to choose between two candidates for my second vote (I voted Green Party first): George Ferguson (Independent) and Marvin Rees (Labour). I think Ferguson would be more likely to make immediate changes to Bristol that would positively affect my life, but Rees clearly made his main priority the needs of people worse off than I am and had a vision of a more equal Bristol.  Representing the voice of a city turns out, for me at least, to be about a bigger social vision than simply the sum of self-interests.* Well of course I do believe there is such a thing as society after all.

Social science is currently enamoured of what analyses of ‘Big Data‘ can tell us, and elections represent one of the biggest and most established big data sets around. This is now supplemented by many, many polls, betting markets and algorithmic engines that attempt to predict the result of elections, to the extent that these samples of public opinion come to be seen to be as almost as valid representations of the public voice as the election itself and the election as simply another data point in the series. But voting itself is a strange, almost mystical, act – especially for a nation such as the US with a strong founding myth of democracy. And the act of voting always carries with it uncertainty. If it were not uncertain – if polls and algorithms could transparently deliver the voice of the people – then there would be no need for an actual election at all. The accuracy of polling data and algorithms have to be measured against the thing itself – the actual election.  Some have been extraordinarily effective at this, with Nate Silver’s data crunching in the US election being seen as some kind of voodoo prophecy:

But without the actual election, the polls and predictions would be meaningless. It still takes the act of voting to express a voice; data cannot replace this act, however clever its sampling and crunching methods.

How else do we, as the public, express our voice to the government? In the UK and many other countries, democracy is not direct but representative. We occasionally have referenda, but most decisions are taken on our behalf by our representative. When we are dissatisfied with our representatives we can choose more direct forms of making our voices heard – from petitions to demonstrations and direct action. Sarah Wanenchek argues that the relationship between government and citizens instantiated in the right to petition is embedded in the communications technology that allow people to not just understand what various candidates are offering, but to actually speak back directly to government. Polls and petitions both offer (partial) reflections of public opinion that governments should heed if they are to maintain legitimacy as governing in the name of the populace. But whereas polls rely on aggregation and questions devised by pollsters, petitions include the wording of people themselves and a means by which people can directly participate in political debate within the public sphere. It is worrying, then, that these more direct forms of democratic engagement may be characterised as unrepresentative lobbying and biased partisanship and less likely to influence government than the supposedly transparent results of polls.

As I write, the votes for the Bristol mayoral election are still being counted, though the low turnout in poorer areas in the south and east of the city, and the collapse of conservative and lib dem votes in the affluent north look likely to favour the independent candidate, George Ferguson. Bristol is a unique city that prides itself on doing things differently. We were the only city to vote for a mayor – largely seen as an expression of exasperation with the city council and local party politics. It makes sense that people would follow through and vote for the independent candidate who has stood on a platform of Bristol over party politics.  I can certainly live with that.

* I still have big reservations about Rees’s integration with the local and national Labour machine, by no means do I think Ferguson would be a disaster for minorities and the poor, and it remains to be seen how much power anyone has to actually get anything done.

I love your low self-esteem

Keep-fit class in the gym, c1981

In the gym, I hear music that I wouldn’t hear anywhere else. At home I listen to the radio (Radio 6 or Radio 4, sometimes Radio 3, can’t bear radio adverts so it’s BBC all the way) or I listen to CDs or Spotify (though less so since I ditched the premium subscription and have to hear their adverts).

At the weekend, in the ‘Ladies Toning Room’ – which is where they keep the machines for lifting weights with your thighs, giant inflatable balls and floor mats for ab crunches – they normally play Kiss FM. In the other weights room they usually play something more ‘urban‘ or Kerrang.

Two songs I heard both focused on girl’s low self-esteem and especially body image (in the gym! yes!). Both were love songs, sung by boys to the female object of their affections, unfortunately I didn’t get the names of the artists or songs. Both basically said ‘even though you think you look crap, I still love you’. Touching? But there was no suggestion of “hey, you shouldn’t bother thinking you look crap because really that’s boring and irrelevant”. The songs were *expecting* that girls think they look crap, and awww, aren’t they sweet and lovable for it, the silly little things. In the song-world it seems normal, and in fact desirable, for girls to say they look crap. The girls’ low self-esteem is not just unfortunate, their vulnerability is in fact desirable. And the solution to this low self-esteem and negative body image? It’s not to realise that in fact what you look like is really not the most important thing in the whole world, but for a guy to convince you that you are in fact beautiful. Because you can only believe you’re beautiful if you’re beautiful in his eyes, and until you are beautiful in his eyes, you’d better profess that you look crap or you won’t be attractive in the first place.

I am so glad I’m not a teenager any more.