Latest Post

How do teachers construct their understanding of “digital technologies”?

School and Learning with Technology

This question is the starting point for my research – but how have I arrived at a point where this seems like the right question? Introductions to research are usually written in formal terms: situating your research in the previous literature and making a case for its practical or theoretical necessity. This approach can make it seem as if your research questions and approach was obvious and always there just waiting for you to come along and articulate them. The formal positioning of research is essential in establishing the warrant for research. But it’s not necessarily how we identify the questions in the first place and doesn’t make transparent our own personal choices in asking these questions, in this way, at this time. For this reason, and also because my research is asking questions about the stories teachers tell about digital technologies, here I am telling a story about my personal and professional experience that situates my research questions in a personal narrative.

Transforming education through technology

I worked as a researcher for five and a half years for Futurelab – a not-for-profit research lab exploring how technologies might enable different kinds of learning and the implications of a digital society for education. I was involved in developing and trialling prototypes for using new technologies to support learning – including exploring social software, locative technology, and distributed “speckled computing” in schools, museums and informal learning situations amongst others. As part of this work, I involved myself not just in the ‘academic’ literature and research about technologies and education but in the wider “ed-tech” field: a somewhat cliquey, loosely defined, but identifiable grouping including commercial companies, educational technology suppliers, industrial developers, policy-makers, non-governmental organisations, academics, enthusiastic educators and a growing number of consultants.

Amongst these circles there was a lot of enthusiasm for the opportunities and potentials of technologies to transform learning for the better. “Transformation” and “innovation” were the watchwords of this grouping. Futurelab itself was implicated in the promotion of digital technologies to usher in a brighter future for education. The chairman of the board of trustees described the lab’s purpose to become “the Hollywood of education”; reflecting both his background in the film industry and his vision for educational technology to be as engaging for young people’s learning as blockbuster films.

Hope in the potential of digital technologies to ‘transform’ education and generate ‘innovative’ solutions to long-standing problems appear to be the common foundations of the ed-tech community. Technologies are cast as creating a need for educational transformation: education needs to adapt and keep up with the demands of a digital society and economy. Technologies are also seen as bringing a necessary disruption to education systems that are so problematic that incremental improvement will not suffice.  Paradoxically, as well as disruption, technologies are also cast as providing the fix to a wide variety of educational problems.

Few people would actually argue that all you have to do to bring about significant change in education is introduce digital technologies (though see the recent exaggerated claims about OLPC in Ethiopia). This sort of crude technological determinism that places all agency in the technology itself tends to be replaced with a  more subtle claim that it is the characteristics, or ‘affordances‘, of technology that make possible new kinds of activities, which allow for transformation. Nevertheless, the technology-plus-human-action explanation still makes grand claims about the possibilities of educational transformation through technology.

Hype, barriers and the messy reality

Yet there seemed to be a disconnection between the transformational rhetoric of the ‘ed-tech’ bubble and the realities of technology-use in schools. One of my earliest research projects in 2005 tracked the introduction of wikis to a classroom. Inspired by the advent of social software and the example of Wikipedia, the class teacher and I had become excited about wiki software’s potential to support collaborative learning. But what I found was that the technologies made little change to the underlying logics of the classroom, which were based on individual work and assessment, and pupils actively resisted involving themselves in each other’s work. My experience seemed to fit into a wider pattern, whereby technologies, when they were widely used in schools, tended to be integrated into existing logics and patterns rather than ushering in widespread transformation or disruption.

One response from the ed-tech world to the question of why technologies seem to have not had a transformational effect on education has been to identity and then remove ‘barriers’, as if once these had been removed, then the benefits of the technology would automatically ‘flow’ (1). A lot of the barriers identified were levelled at teachers who were caricatured as fearful of new technologies, unskilled and in need of re-training, and even as just being too old to understand the power of new technologies. Outdated teachers and schools were blamed for their failure to allow technologies to achieve their transformational potential without taking seriously the real reasons why technology might not be enthusiastically adopted or might not be used in the transformative ways envisioned by enthusiasts (2).

While I was working with teachers I found that they often had different ideas about the potential uses of technology than I did. When a teacher I was working with described how he hoped that the technologies would allow the school to have greater control of children’s out-of-school behaviour I realised that we had fundamentally different views not just of what our project was about – but what education was about – and this helped explain our different views about how technologies should be used. At the time I didn’t know how to respond within the research project. But it strikes me now that these differences of opinion need to be understood and explored, not just written off as teachers’ outdated views about the technology-use.

At conferences with other people in the ed-tech world it often seemed as if we were part of a shared movement that agreed on the benefits of technology use and the task in front of us was to demonstrate those benefits in order to persuade policy-makers and teachers to take technology seriously. Yet, as Lisa Phillips discovered in her Masters research into ‘innovation’ there were actually diverse, conflicting visions of what a technologically transformed education system might look like. An excessive focus on the ‘tools’ of technology rather than the ‘ends’ of education concealed contradictory messages about what exactly we were trying to transform and why.

By way of illustration, some of the different visions that I think I can identify in the ed-tech community so far are:

  1. Keeping Up with Change: Our society, culture, politics are changing in the wake of widespread use of digital technologies. This means we need to learn new things to be ready for the wider world, and in turn we need to learn them in new ways. Digital technologies inform what we need to learn and how we need to learn it.
  2. 21st Century Skills and employability: Education steeped in technologies is required if we are to educate our future workforce in the skills demanded by businesses including teamwork, communication, problem-solving, innovation as well as proficiency with using digital technologies.
  3. The Knowledge Economy: retaining our global competitiveness in the face of the rising nations of Brazil, Russia, India and China will require highly skilled knowledge workers; a technologically-skilled population is crucial to national competitiveness.
  4. Participatory Cultures and Digital Literacies: In order to fully participate in our society, politics and culture we need to learn to communicate, create and critique through digital media; education therefore needs to equip all young people with these skills.
  5. Voice and Democracy: Technologies can facilitate the expression voices of those who might otherwise not be heard; young people can more easily express themselves, have their views taken into account in matters that concern them and engage with others through new media forms and with lower barriers to publishing via the internet
  6. Social Justice and Digital Divides: The most advantaged in society are able to reap the benefits of access to and use of digital technologies and so education has a responsibility to make sure these opportunities are available to all.
  7. Access to Education: Technologies can extend educational opportunities to those who would otherwise be unable to access them; including those excluded from traditional education by disability or illness; those in regions where school access is unavailable. It is argued that access to knowledge no longer needs to be restricted to institutions and some question the need for schools altogether.
  8. Increasing Achievement: Technologies offer new tools to aid cognitive development and enable more effective forms of teaching and learning traditional content.
  9. Motivating Learning: Children and young people love using digital technologies (in particular games, social media, mobile phones) so education should make use of this motivating power, harnessing it to traditional educational aims.
  10. Educating future consumers: A vision that may not be publicly expressed very often, but is a driver for technology-use in schools, is the need to educate children in the necessity of digital technologies for daily activities, and even specific brands, in order that they then persuade their families to purchase those technologies and become lifelong consumers when they grow up.

Each ‘vision’ is very crudely described here. It is of course not an exhaustive list, and each vision is not mutually exclusive of the others (do add more in comments!). However, neither do they necessarily sit easily alongside another. I am also not making judgements about whether any of these aims are ‘right’ or not; certainly very few people would describe any of these visions as completely worthless. There are, however, very different views about which might take priority – and these decisions about whether it is more important to use technologies to increase motivation to learn or to express a democratic voice are ultimately political decisions.

Unpicking the discourses of the ed-tech community like this shows that the visions of educational transformation promised by technologies may actually have very little to do with technologies themselves. Instead it seems that technologies are recruited to play particular roles in different political visions about the purpose of education.

With this understanding of how technologies are implicated in visions of educational transformation, it makes much less sense to ask why teachers are not taking advantage of the assumed obvious benefits of technology in their classrooms. Just as the visions listed above recruit technologies to play a particular role in educational narratives, teachers’ uses of technologies may be better understood as a result of how they position technologies in their narratives of education – and how in turn these narratives help construct their ideas of what digital technologies are, and what they can do in education

1. Selwyn, N. (2012). Making sense of young people, education and digital technology: the role of sociological theory. Oxford Review of Education38(1), 81–96

2. Perrotta, C. (2012). Do school-level factors influence the educational benefits of digital technology? A critical analysis of teachers’ perceptions. British Journal of Educational Technology, (Early View, 1–14. doi:10.1111/j.1467-8535.2012.01304.x

  • A post for Digital Media and Learning. Digital media allow us to produce, collect, organise and interpret more data about our lives than ever before. Our every digital interaction contributes to vast databases of information that index our behaviour from online movie choices to mapping networks of connections across twitter. In an age of uncertainty, big data sets promise to provide an objective lens through which to understand the world, and both individuals and institutions like schools are turning to data to drive analysis and action. But what does this increasing datafication mean for how we understand the world, and how we understand learning? Learning to read digital data Data can be reassuring. In an uncertain world, verifiable data can provide us with solid facts on which to ground our understanding of what is going on in order to guide our decisions. But while data makes some things apparent and more visible to us, we also need to be aware of what is not visible through this datafication. Of course, any analysis is only as good as the data that feeds into it. Choices about which data to collect tend to favour more easily quantifiable elements, which makes it easy to overlook more elusive or intangible aspects – a point which is often used to argue against measuring the quality of learning only in terms of grades. But our interpretation of data is also skewed by how that data is represented. Raw data in the form of endless numbers tends to be pretty uninspiring stuff, and difficult for the average person to make sense of. There is public demand for access to and transparency of data, but not the equivalent literacies to read and interpret it. This explains the popularity of infographics that use visual design to distil complex data into more immediately appealing and readable representations. Just as journalists and film-makers take decisions about what details to include in a story or how to film a scene, infographic designers take decisions about which elements and connections of a dataset to highlight. Even the most basic of data representations tends to influence our interpretations. My local school reports termly on students’ attainment and their progress since the previous term. Slow progress is coloured red, which focuses scrutiny and improvement efforts on those student groups and subjects where progress is slow even when their absolute level of achievement is pretty high at the expense of those where progresss is better but achievement still low. As Laura Noren points out, while most of us learn something about how writing achieves its effects through learning to write ourselves, very few of us learn to create or critique visual representations of numerical information. The particular interpretations of data offered to us through graphic design are thereby very difficult for most of us to critique – as is also illustrated by the graphical representations of data used by news media, such as Fox News. Data reflects the past and drives future behaviour As we engage in online activity, we leave trails of data in our wake that are added to the huge databases held by Facebook, Google and marketing companies. But there is also a growing movement of people tracking and analysing data about themselves. Members of the quantified self movement track all kinds of data about their daily lives – from numbers of miles run over a year, to sleep patterns, to symptoms of long term illnesses. The resulting data is not used just to develop greater awareness of behaviour patterns, but to gain more control over future behaviour. Data is used as a motivating tool, with individuals playing games, often competitions with others, to get higher or lower numbers in their personal data. Datafication is thus both backward-facing, representing what has happened so far, and also forward-facing, driving future behaviour. Yet the way that datafication informs future action is not always straightforward. In schools, backward-facing data about student achievement is used as an accountability measure, for school inspectors, parents and the public. The same data is also used to inform school improvement plans – to help teachers understand which groups of students are struggling and which are succeeding, which topics they have grasped and which they are finding more difficult. Yet using data to report on previous performance can come into conflict with using it to inform future activity. There are pressures for schools to put the most positive spin possible on data when it is being used for accountability – but to use data for improvement means strongly interrogating and reflecting on the data to understand what is really going on. The insistence on transparency of data can also come to be seen as an end in itself. One school I worked with developed an online system for visualising data for pupils, parents, teachers and school managers. Yet the power of the technology to create a beautiful representation of complex data actually distracted from the question of how this data should be interpreted and acted upon. Beautiful data can be seductive, giving the illusion that if we only have enough information we will be able to make the right decisions. But exactly what parents should do if they know their child is a superstar in Science but failed a spelling test, or exactly what strategies teachers might adopt as a result of knowing that a third of their class struggle with fractions are questions to which data cannot supply the answers. While providing an illusion of certainty and control, the data itself only provides a starting point for asking more questions. Facebook is a prime example of how datafication attempts to influence our behvaiour. By displaying numbers of ‘likes’, ‘comments’, ‘shares’ and ‘friends’, Facebook encourages its users to spend more time on the site creating and sharing content that will increase those numbers – and provide more valuable data about ourselves that makes it easier for marketers to effectively target us with adverts. In an attempt to reveal how this quantification of behaviour influences our online behaviour, Ben Grosser has produced the Facebook Demetricator – a browser add-on which strips out the numbers from Facebook. Rather than notifications reading ‘7 people like this’ users simply see ‘people like this’; rather than ‘267 friends’ it just displays ‘friends’. Grosser hopes to show users how the designed-in quantification drives some behaviours and not others – and invites users to question why Facebook has chosen to make visible some data and not others. It could, as Grosser points out, tell us how many hours per week we have spent on the site or how many promoted stories we have clicked on – but this might drive less, rather than more, time spent on the site. The use of data to drive online behaviour does not stop at Facebook. By using cookies to track interaction across multiple sites, and then aggregating this information, marketers get an even more accurate and nuanced picture of who you are and therefore the adverts you are more likely to respond to. Collusion provides a great visualisation of this behind-the-scenes datafication. The effects of datafication also arguably extend to our offline behaviour and influence how we see ourselves and the world around us. If numbers of friends, likes and comments are what drives our interaction online, particular attitudes and perspectives are being cultivated that we may carry offline. Different sites collect and reflect back to us different kinds of data about our identities. But the kinds of data that are collected and how they are represented make some identities more possible than others. For example, Facebook is rumoured to be developing a ‘want’ button, encouraging the presentation of an identity shaped by consumer desire. The kinds of data that feed into these data-driven representations present particular kinds of identities to the outside world, but also reflect back and influence how we see ourselves. To take an example from the quantified self movement, tracking illness symptoms can lead people to view themselves as 'an unwell person'. Similarly, if pervasive visualisations of achievement data are the main way that students' school identities are presented to their teachers and themselves, they will learn to see themselves as a 'slow' or a 'bright' student. Jenny Davis and Nathan Jurgenson describes this simultaneous production and consumption of identity-data as 'prosumption'. Remixing data None of the data we produce makes sense in and of itself, in needs to be placed in context in a wider narrative to have meaning. For example, monitoring our grades does not show whether progress is 'good' unless we compare it with other students or an expected benchmark. If we want to have control over the datafication of our identity, context is all. This is why curation is so important: the selection of some elements and exclusion of others allows a particular story to be told. The way that the logic of data shapes and constructs our understandings, decisions and identities, and the extent to which we have control over this process varies considerably between settings. The question then becomes: who has the power to choose which elements to select in constructing particular tellings of who we are? Within the bounds of Facebook's architecture, we can use various settings to show and hide different information about ourselves – but it is also possible for our 'friends' to add new data, to disaggregate and recombine our data , generating different 'tellings' of who we are, or undermining our carefully curated presentations. In schools, the decisions about what data to collect and how to represent it are driven by the institution's demands for accountability of student performance: students themselves have very little control over what data is collected, how it is contextualised and how it is interpreted. While datafication may give the illusion of more certainty about ourselves, our world and our learning, it does not in itself provide final answers. If data is to open up opportunities for thinking and acting differently in the future, it can only ever succeed in posing more questions. Dawn Nafus describes this as the “more-and-yet-less” quality of data. Measuring data gives more information, but only succeeds in posing more questions about what data really means. Tracking a student's progress does not tell us how to better support their learning – and if we are to use the data in any meaningful way at all it drives us to consider what we really mean when we talk about learning and progress. If we are to avoid having more information but less meaning, and avoid becoming subjects defined by datafication, we need to be able to continually remix our data to take control of our own stories. Given that we are all producing masses of data as a by-product of our digitised interactions, and there is greater capacity for tracking, curating and remixing that data into stories, the possibility exists that we could have greater control over which versions of our identities we presented in which contexts. If we could take the data about us and recontextualise it in our own stories we could have more control about how that data was represented and interpreted, placing school grades and facebook photos alongside other stories and other kinds of data to tell a different kind of narrative. If we were able to continually remix our data so that it was recognised as only a partial picture of who we are, we may be better able to resist the controlling illusion of certainty offered by datafication and create possibilities for data to drive new ways of thinking and acting in the future.

Who am I?

I am a writer, researcher and phd student living in Bristol, UK. I am interested in, and write about, education, digital culture, politics, social theory, feminism and writing.